Vector Concepts (Trig)

The diagrams below shows right triangles, one representing position and the other representing velocity.

For each picture, what is the Pythagorean Theorem?

What is the sine of θ ? What is the cosine of θ ?

$$\sin\theta = \frac{x}{\zeta}$$
 $\cos\theta = \frac{x}{\zeta}$

$$\cos\theta = \frac{x}{C}$$

$$\sin\theta = \frac{v_4}{v_1}$$

$$\sin\theta = \frac{v_y}{V} \quad \cos\theta = \frac{v_x}{V}$$

In terms of the hypoteneuse and the angles shown above, what are x & y and v, & v,?

$$v_x = V \cos \theta$$

$$v_x = V \cos \theta$$
 $v_y = V \sin \theta$

Questions

1. Use the Pythagorean Theorem to find the speeds of the following velocity vectors:

2. You are given the horizontal and vertical components of different velocity vectors. Find the resultant speed:

a.
$$v_x = 7 \text{ m/s}$$

$$v_y = 5 \text{ m/s}$$

$$v_y = 5 \text{ m/s}$$
 $v = 8 \text{ 6}$ b. $v_x = 15 \text{ m/s}$ $v_y = 8 \text{ m/s}$ $v = 77$

b.
$$v_* = 15 \text{ m/s}$$

$$v_{v} = 8 \text{ m/s}$$

$$v = 17$$

c.
$$v_{-} = 20 \text{ m/s}$$

$$v = 32$$

d.
$$v_{n} = 10 \text{ m/s}$$

c.
$$v_x = 20 \text{ m/s}$$
 $v_y = 25 \text{ m/s}$ $v = 32$ d. $v_x = 10 \text{ m/s}$ $v_y = -15 \text{ m/s}$ $v = /8$

- 3. For each of the triangles shown, calculate the sides of the right triangles, given the hypoteneuse and angle:

d.

$$x = 40\cos 25$$

= 36.3

$$X = 5.36$$

$$x = 19.3$$

$$y = 15 \sin 30$$

$$y = 40 \sin 25$$
 $y = 4.50$

$$y = -5.18$$
Side 1

Vector Concepts (Trig)

4. Calculate the components of each of the velocities shown:

- 5. Calculate the components of the given velocities:
 - a. A ball is kicked with a velocity of 30 m/s at an angle of 35° above the horizontal.

$$v_x = \frac{24.6}{\text{m/s}} \text{m/s}$$

$$v_y = \frac{17.2}{\text{m/s}}$$

b. A pen is tossed with an initial velocity of 5 m/s at an angle of 65° above the horizontal.

$$v_x = \frac{2.11}{\text{m/s}} \text{m/s}$$

$$v_y = \frac{4.53}{\text{m/s}} \text{m/s}$$

c. A projectile hits the ground with a velocity of 25 m/s at an angle of 40° below the horizontal.

$$v_x = \frac{17.2}{\text{m/s}} \text{m/s}$$

$$v_y = \frac{-16.1}{\text{m/s}}$$

d. A block of ice slides off a roof with an initial velocity of 9 m/s at an angle of 30° below the horizontal.

$$v_x = \frac{7.79}{\text{m/s}} \text{m/s}$$

$$v_y = \frac{-4.5}{\text{m/s}} \text{m/s}$$

e. A ball rolls horizontally off a table with a speed of 8 m/s.

$$v_x = \underline{\hspace{1cm}} m/s$$
 $v_y = \underline{\hspace{1cm}} m/s$

f. A soccer ball in the air has a velocity of 32 m/s at an angle of 25° above the horizontal.

$$v_x = \underline{\qquad \qquad } 29.0 \text{ m/s} \qquad \qquad v_y = \underline{\qquad \qquad } 13.5 \text{ m/s}$$

g. A pen is thrown straight up in the air with an initial velocity of 18 m/s.

$$v_x = \frac{O}{m/s}$$
 $v_y = \frac{f \mathcal{E}}{m/s}$

h. A bullet is fired with an initial velocity of 400 m/s at an angle of 15° above the horizontal.

$$v_x = 386$$
 m/s $v_y = 104$ m/s